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Outline

• OS Network Performance 

• IX as a case study
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Intel VT-x

• Makes x86 hardware “classically 
virtualizable” (as defined by Popek and 
Goldberg) 

• Goal: Direct execution of most privileged 
instructions 

• Introduces two CPU modes: 
• VMX root mode: for running VMM 
• VMX non-root mode: for running VMs (guest) 
• Each mode has its own rings (CPL0-CPL3) 

• In-memory structure called VM Control 
Structure (VMCS) stores privileged register 
state and control flags
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Linux network software structure
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Network Interface Card (NIC)

Kernel

Sockets (and queue)

Application

read/write; 
socket/accept/connect…

Interrupt (received packet, transmitted packet)

TCP processing

In kernel:
  • Access to NIC hardware
  • De-multiplex incoming
    packets (e.g., ARP/TCP)
  • Prevent one app from messing with  
     another app’s connections
  • Lots of locks and inter-core sharing:

• Queues
• TCP Connection state
• …



High-performance network servers

• For example, memcached (in-memory key/
value storage server) 
• High request rate 
• Short requests/responses 
• Lots of clients, lots of potential parallelism 
• Want high throughput under high load (request per 

second) 
• Want low latency under low/modest load (seconds 

per request) 
• Want low tail of latency distribution
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What are the relevant HW limits?

• 10 Gb Ethernet: 15 million tiny packets/sec. 

• 40 Gb Ethernet: 60 million tiny packets/sec. 

• RAM: a few gigabytes/sec. 

• Interrupts: 1 million/sec. 

• System calls: a few million/sec. 

• Contended locks: 1 million/sec. 

• Inter-core data movement: a few million/sec. 

• So: 
• If limited by Ethernet and RAM: XX million/sec. 
• If limited by interrupts, locks, etc.: Y million/sec.
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Latency ingredients

• Latency important for e.g., web page with 
hundreds of items 

• Low load: sum of a sequence of steps: 
• Network speed-of-light and switch round-trip time 
• Interrupt 
• queue operations 
• sleep/wakeup 
• system calls 
• inter-core data movement 
• RAM fetches
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Latency ingredients

• Latency important for e.g., web page with 
hundreds of items 

• High load: sum of a sequence of steps: 
• Latency is largely determined by wait time: 

queueing 
• Efficiency (high throughput) reduces queueing time 
• Bursty arrivals increase queue time 
• Bursty service times increase queue time 
• Structural problems can increase queue time 
– Load imbalance, or nobody servicing a queue 

• Latency is hard to reason about: hard to 
improve
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IX: a design for a high-performance network stack

• Built on top of Linux (with Dune kernel 
module) 

• Different syscall API for networking (doesn’t 
preserve Linux API) 

• Different TCP/IP stack architecture (doesn’t 
use Linux TCP/IP stack code or design)
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Linux network software structure
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Multi-queue NIC

Linux Kernel

IX Kernel

IX Application

write to xmit buffers
poll receive buffers

Thread 1 Thread 2

Queue 1 Queue 2

run_io

TCP/IPTCP/IP

run_io

Queues are actually in IX Kernel memory



IX Notes

• IX runs in VMX non-root (guest) mode using 
Dune 

• IX Kernel at CPL 0 

• IX App at CPL 3 

• Linux kernel gives dedicated NIC queues 
and dedicated cores 
• After that, Linux isn’t involved with networking 

• IX application makes system call to IX kernel 
• To send and receive packets 

• Packet buffers are in memory shared 
between IX kernel and IX application (and 
NIC) 
• So, packet data isn’t copied (unlike Linux)
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zero-copy!



Idea: batching system call interface

• The problem: System call overhead is big if 
messages are small 
• Want to send/recv more packets/sec than available 

syscalls/sec 

• The solution: run_io() 
• run_io() argument contains one or more syscalls: 
– send to a TCP connection 
– done with a recv buffer 
– close/connect/accept 
• run_io() return contains: 
– Result of each of syscall, plus 

- recv on a connection 
- send completed 
- connection opened, connection terminated, …
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Idea: batching system call interface

• Each user/kernel crossing does lots of work 
• Amortizes syscall cost across lots of packets
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while True:
  run_io(in, out)
  for msg in in:
    process msg
    out.append(reply)

pseudo-code for IX app thread



Idea: run to completion
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Idea: run to completion

• The problem: 
• Linux uses CPU time moving packets through 

stages and queues 
• Queues: 
– Good if application is doing something else 
– Bad for network performance (locks, core-to-core, 

cache eviction) 

• What is run-to-completion?
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Idea: run to completion

• What is run to completion? 
• Complete the processing of one batch of inputs 

before starting on the next batch 
• Really complete: driver, TCP, application, enqueue 

reply 

• How? 
• run_io() calls down to driver, returns packet all 

the way to app 
• app’s next call to run_io() has reply message 

• Why? 
• Single thread carries batch of packets thru all steps 
• Avoids queues, sleep/wakeup, context switch, core-to-core 

transfers 
• Keeps packet batch in CPU data cache 
• No problem balancing processing rate in each stage  16



Idea: polling rather than interrupts

• The problem: 
• Interrupts are expensive 
• Interrupts are redundant if input is always likely 

waiting 

• What is polling? 
• Periodically check NIC DMA queues for new input 

• Why hard? 
• Where to put the checks?  In what loop? 
• Might check too often—waste CPU 
• Might check too rarely—high latency, queue overflow
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Idea: polling rather than interrupts

• IX’s solution: 
• Each application thread has a  

dedicated core: 

• run_io polls NIC DMA queues 
• No waste: if no input, nothing for the core to do 

anyway 
• If input, grabs a batch and returns it to the 

application 
– Never waits for a batch; just grabs what’s there 
• Automatically polls more often with low load, less at 

high load 
– Paper calls this adaptive polling
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while True:
  run_io(in, out)
  for msg in in:
    process msg
    out.append(reply)



What about multi-core parallelism?

• The problem: 
• One core often can’t deliver enough throughput 
• Will leave most of a 10Gb Ethernet idle 

• Opportunity 
• Lots of clients 
• Work for each client is often independent 
• All modern machines have multiple cores 

• The dangers 
• Lock contention is expensive 
• Data movement (between cores) is expensive
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What about multi-core parallelism?

• To avoid data movement and lock 
contention: 
• All actions for a client, TCP, and packet should be 

on the same core 
• No data should be used on more than one core 

• Examples of potentially shared data: 
• packet content 
• NIC queues 
• packet free lists 
• TCP data structures 
• Application data (e.g., memcached’s in-memory DB)
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Idea: multiple NIC queues for parallelism

• Modern NICs support many independent 
DMA queues 
• NIC uses filters and hashing to pick the queue 

• Linux sets up a separate set of NIC queues 
for each IX application 
• One queue per core for each IX application 
• Linux tells NIC a filter for each IX application
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Idea: multiple NIC queues for parallelism

• NIC hashes client IP addr/port to pick the 
queue for each incoming packet 
• “flow-consistent hashing” or “receive-side 

scaling” (RSS) 
• NIC gives all packets for a given TCP connection to 

the same core 
• No need to share TCP connection state among all 

cores 
• No need to move packet data between cores 

• run_io looks at NIC DMA queue for just its 
own core 

• A new connection is given to the core 
determined by the NIC’s hash 
• Hopefully uniform and results in a balanced load
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Idea: zero copy

• How to avoid IX/user and user/IX copies of 
packet data? 
• Across the CPL 0/CPL 3 boundary (like user/kernel) 
• 40 Gb/sec may stress RAM throughput 

• IX uses page table to map packet buffers into 
both IX and application 
• NIC DMAs to/from this memory 
• run_io carries pointers into this memory 

• App/IX cooperate to note when received/sent 
buffer is free 
• freed buffers reported via run_io
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IX design limitations

• Assumes many parallel clients making small 
requests 
• You’d want something else for a single 40-Mb/sec 

transfer 

• Assumes good load balancing across cores 
• Clients and requests evenly distributed across cores 
• Requests all take about the same amount of time 
• Could reassign flows to NIC queues? 
• Could steal work from other cores? 

• Assumes non-blocking request handling 
• Service code computes and then replies 
• Does not: read the disk, send an RPC and wait, etc. 
• Blocking would cause an idle core and expanding queue 
• Could shift blocked requests to a dedicated thread/core?
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Evaluation

• What should we look for? 
• High throughput under high load—especially for 

small messages 
• Low latency under light load 
• Throughput proportional to number of cores
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Evaluation

• Low latency test 
• Single message ping-ponged between two servers 

on a 10Gb connection 
• Latency for a 64 byte message: 
– Between two IX servers:      5.7µs 
– Between two Linux servers: 24µs 
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Goodput: app-level throughput 

Why increases?
Amortizes fixed costs over
larger amounts of data
Limited by 10Gb Ethernet - minus headers



Evaluation

• Low latency test with small packets 
• Why does IX beat Linux on goodput? 
– Latency-limited 
– IX polling sees the message sooner 
– IX has no interrupt/queuing/sleep/wakeup 
– Fewer user/kernel crossings
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Evaluation

• Multi-core scalability
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Summary: IX makes many big  
architectural decisions differently

• Per-application network stack 
• Rather than single shared stack 
• Allows packet buffers to be shared: zero copy 

• Dedicated cores to application threads 
• Rather than shared cores multiplexed by kernel 
• Allows polling and run to completion 
• Helps make the software more efficient, and simpler 
• Requires plentiful cores 

• Dedicated NIC queues to application threads 
• Rather than shared queues, multiplexed by kernel 
• More direct access for better efficiency 
• Requires plentiful NIC queues
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Questions

• What is adaptive batching? 
• Never wait for packets 
• Upper bound on size of batch 

• Could a single app disable reception for all 
other apps by acquiring all the buffers? 

• What is zero-copy? 

• When would one not necessarily want high 
throughput and low latency? 

• What is a data plane? 
• The code responsible for manipulating the packets 

• What is the hardware/OS mismatch? 
• Hardware should support high throughput/low latency 
• Most OSes are not designed to use the hardware well
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Questions

• What are tradeoffs of using IX (other than 
only being able to run one app)? 
• Different API 
• Possibly-wasted/underutilized cores 
• Actually, can run ≥1 app 

• What is RDMA? 
• User-level reads/writes of remote memory 
• Fast because goes directly from local NIC to remote 

NIC to registered memory, bypassing the remote 
OS 

• Are elastic threads some type of sthread? 
• No, just thread with its own CPU and NIC queue
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