
CS 134
Operating Systems

April 24, 2019

OS Network Performance
IX

Based on OS Network Performance

https://pdos.csail.mit.edu/6.828/2018/lec/l-net.txt

Outline

• OS Network Performance

• IX as a case study

 2

Intel VT-x

• Makes x86 hardware “classically
virtualizable” (as defined by Popek and
Goldberg)

• Goal: Direct execution of most privileged
instructions

• Introduces two CPU modes:
• VMX root mode: for running VMM
• VMX non-root mode: for running VMs (guest)
• Each mode has its own rings (CPL0-CPL3)

• In-memory structure called VM Control
Structure (VMCS) stores privileged register
state and control flags

 3

Linux network software structure

 4

Network Interface Card (NIC)

Kernel

Sockets (and queue)

Application

read/write;
socket/accept/connect…

Interrupt (received packet, transmitted packet)

TCP processing

In kernel:
 • Access to NIC hardware
 • De-multiplex incoming
 packets (e.g., ARP/TCP)
 • Prevent one app from messing with  
 another app’s connections
 • Lots of locks and inter-core sharing:

• Queues
• TCP Connection state
• …

High-performance network servers

• For example, memcached (in-memory key/
value storage server)
• High request rate
• Short requests/responses
• Lots of clients, lots of potential parallelism
• Want high throughput under high load (request per

second)
• Want low latency under low/modest load (seconds

per request)
• Want low tail of latency distribution

 5

What are the relevant HW limits?

• 10 Gb Ethernet: 15 million tiny packets/sec.

• 40 Gb Ethernet: 60 million tiny packets/sec.

• RAM: a few gigabytes/sec.

• Interrupts: 1 million/sec.

• System calls: a few million/sec.

• Contended locks: 1 million/sec.

• Inter-core data movement: a few million/sec.

• So:
• If limited by Ethernet and RAM: XX million/sec.
• If limited by interrupts, locks, etc.: Y million/sec.

 6

Latency ingredients

• Latency important for e.g., web page with
hundreds of items

• Low load: sum of a sequence of steps:
• Network speed-of-light and switch round-trip time
• Interrupt
• queue operations
• sleep/wakeup
• system calls
• inter-core data movement
• RAM fetches

 7

Latency ingredients

• Latency important for e.g., web page with
hundreds of items

• High load: sum of a sequence of steps:
• Latency is largely determined by wait time:

queueing
• Efficiency (high throughput) reduces queueing time
• Bursty arrivals increase queue time
• Bursty service times increase queue time
• Structural problems can increase queue time
– Load imbalance, or nobody servicing a queue

• Latency is hard to reason about: hard to
improve

 8

IX: a design for a high-performance network stack

• Built on top of Linux (with Dune kernel
module)

• Different syscall API for networking (doesn’t
preserve Linux API)

• Different TCP/IP stack architecture (doesn’t
use Linux TCP/IP stack code or design)

 9

Linux network software structure

 10

Multi-queue NIC

Linux Kernel

IX Kernel

IX Application

write to xmit buffers
poll receive buffers

Thread 1 Thread 2

Queue 1 Queue 2

run_io

TCP/IPTCP/IP

run_io

Queues are actually in IX Kernel memory

IX Notes

• IX runs in VMX non-root (guest) mode using
Dune

• IX Kernel at CPL 0

• IX App at CPL 3

• Linux kernel gives dedicated NIC queues
and dedicated cores
• After that, Linux isn’t involved with networking

• IX application makes system call to IX kernel
• To send and receive packets

• Packet buffers are in memory shared
between IX kernel and IX application (and
NIC)
• So, packet data isn’t copied (unlike Linux)

 11

zero-copy!

Idea: batching system call interface

• The problem: System call overhead is big if
messages are small
• Want to send/recv more packets/sec than available

syscalls/sec

• The solution: run_io()
• run_io() argument contains one or more syscalls:
– send to a TCP connection
– done with a recv buffer
– close/connect/accept
• run_io() return contains:
– Result of each of syscall, plus

- recv on a connection
- send completed
- connection opened, connection terminated, …

 12

Idea: batching system call interface

• Each user/kernel crossing does lots of work
• Amortizes syscall cost across lots of packets

 13

while True:
 run_io(in, out)
 for msg in in:
 process msg
 out.append(reply)

pseudo-code for IX app thread

Idea: run to completion

 14

Idea: run to completion

• The problem:
• Linux uses CPU time moving packets through

stages and queues
• Queues:
– Good if application is doing something else
– Bad for network performance (locks, core-to-core,

cache eviction)

• What is run-to-completion?

 15

Idea: run to completion

• What is run to completion?
• Complete the processing of one batch of inputs

before starting on the next batch
• Really complete: driver, TCP, application, enqueue

reply

• How?
• run_io() calls down to driver, returns packet all

the way to app
• app’s next call to run_io() has reply message

• Why?
• Single thread carries batch of packets thru all steps
• Avoids queues, sleep/wakeup, context switch, core-to-core

transfers
• Keeps packet batch in CPU data cache
• No problem balancing processing rate in each stage 16

Idea: polling rather than interrupts

• The problem:
• Interrupts are expensive
• Interrupts are redundant if input is always likely

waiting

• What is polling?
• Periodically check NIC DMA queues for new input

• Why hard?
• Where to put the checks? In what loop?
• Might check too often—waste CPU
• Might check too rarely—high latency, queue overflow

 17

Idea: polling rather than interrupts

• IX’s solution:
• Each application thread has a  

dedicated core:

• run_io polls NIC DMA queues
• No waste: if no input, nothing for the core to do

anyway
• If input, grabs a batch and returns it to the

application
– Never waits for a batch; just grabs what’s there
• Automatically polls more often with low load, less at

high load
– Paper calls this adaptive polling

 18

while True:
 run_io(in, out)
 for msg in in:
 process msg
 out.append(reply)

What about multi-core parallelism?

• The problem:
• One core often can’t deliver enough throughput
• Will leave most of a 10Gb Ethernet idle

• Opportunity
• Lots of clients
• Work for each client is often independent
• All modern machines have multiple cores

• The dangers
• Lock contention is expensive
• Data movement (between cores) is expensive

 19

What about multi-core parallelism?

• To avoid data movement and lock
contention:
• All actions for a client, TCP, and packet should be

on the same core
• No data should be used on more than one core

• Examples of potentially shared data:
• packet content
• NIC queues
• packet free lists
• TCP data structures
• Application data (e.g., memcached’s in-memory DB)

 20

Idea: multiple NIC queues for parallelism

• Modern NICs support many independent
DMA queues
• NIC uses filters and hashing to pick the queue

• Linux sets up a separate set of NIC queues
for each IX application
• One queue per core for each IX application
• Linux tells NIC a filter for each IX application

 21

Idea: multiple NIC queues for parallelism

• NIC hashes client IP addr/port to pick the
queue for each incoming packet
• “flow-consistent hashing” or “receive-side

scaling” (RSS)
• NIC gives all packets for a given TCP connection to

the same core
• No need to share TCP connection state among all

cores
• No need to move packet data between cores

• run_io looks at NIC DMA queue for just its
own core

• A new connection is given to the core
determined by the NIC’s hash
• Hopefully uniform and results in a balanced load

 22

Idea: zero copy

• How to avoid IX/user and user/IX copies of
packet data?
• Across the CPL 0/CPL 3 boundary (like user/kernel)
• 40 Gb/sec may stress RAM throughput

• IX uses page table to map packet buffers into
both IX and application
• NIC DMAs to/from this memory
• run_io carries pointers into this memory

• App/IX cooperate to note when received/sent
buffer is free
• freed buffers reported via run_io

 23

IX design limitations

• Assumes many parallel clients making small
requests
• You’d want something else for a single 40-Mb/sec

transfer

• Assumes good load balancing across cores
• Clients and requests evenly distributed across cores
• Requests all take about the same amount of time
• Could reassign flows to NIC queues?
• Could steal work from other cores?

• Assumes non-blocking request handling
• Service code computes and then replies
• Does not: read the disk, send an RPC and wait, etc.
• Blocking would cause an idle core and expanding queue
• Could shift blocked requests to a dedicated thread/core?

 24

Evaluation

• What should we look for?
• High throughput under high load—especially for

small messages
• Low latency under light load
• Throughput proportional to number of cores

 25

Evaluation

• Low latency test
• Single message ping-ponged between two servers

on a 10Gb connection
• Latency for a 64 byte message:
– Between two IX servers: 5.7µs
– Between two Linux servers: 24µs

 26

Goodput: app-level throughput

Why increases?
Amortizes fixed costs over
larger amounts of data
Limited by 10Gb Ethernet - minus headers

Evaluation

• Low latency test with small packets
• Why does IX beat Linux on goodput?
– Latency-limited
– IX polling sees the message sooner
– IX has no interrupt/queuing/sleep/wakeup
– Fewer user/kernel crossings

 27

Evaluation

• Multi-core scalability

 28

Summary: IX makes many big  
architectural decisions differently

• Per-application network stack
• Rather than single shared stack
• Allows packet buffers to be shared: zero copy

• Dedicated cores to application threads
• Rather than shared cores multiplexed by kernel
• Allows polling and run to completion
• Helps make the software more efficient, and simpler
• Requires plentiful cores

• Dedicated NIC queues to application threads
• Rather than shared queues, multiplexed by kernel
• More direct access for better efficiency
• Requires plentiful NIC queues

 29

Questions

• What is adaptive batching?
• Never wait for packets
• Upper bound on size of batch

• Could a single app disable reception for all
other apps by acquiring all the buffers?

• What is zero-copy?

• When would one not necessarily want high
throughput and low latency?

• What is a data plane?
• The code responsible for manipulating the packets

• What is the hardware/OS mismatch?
• Hardware should support high throughput/low latency
• Most OSes are not designed to use the hardware well

 30

Questions

• What are tradeoffs of using IX (other than
only being able to run one app)?
• Different API
• Possibly-wasted/underutilized cores
• Actually, can run ≥1 app

• What is RDMA?
• User-level reads/writes of remote memory
• Fast because goes directly from local NIC to remote

NIC to registered memory, bypassing the remote
OS

• Are elastic threads some type of sthread?
• No, just thread with its own CPU and NIC queue

 31

