
CS 134
Operating Systems

January 30, 2019

 
GDB

This work, is a derivative of Using the GNU Debugger

https://pdos.csail.mit.edu/6.828/2018/lec/gdb_slides.pdf

Administrivia

• We have a grutor!
•Mars Park
•Wednesdays: 7-9 in B105

• For your lab submittal, if your github name
isn’t clearly identifiable, add an AUTHOR.txt
to your JOS repository:

• Lecture recordings linked from schedule

• Gradescope: when submitting, associate
pages with homework question 2

My name is John Smith (jsmith@hmc.edu)
AUTHOR.txt

Grading

mailto:jsmith@hmc.edu

HW 1

• From bootasm.S:

• Later, in bootmain():

 3

 # Set up the stack pointer and call into C.
 movl $start, %esp
 call bootmain

 // Call the entry point from the ELF header.
 // Does not return!
 entry = (void(*)(void))(elf->entry);
 entry();

HW 1: What’s on the stack?

• call bootmain pushes a return address

• The prologue in bootmain makes a stack
frame: 
 
 
 
 

• The call to entry pushes a return address

 4

push %ebp
mov %esp,%ebp
push %edi
push %esi
push %ebx
sub $0x10,%esp

HW 1: The stack when we get to 0x1000c

 5

0x7bfc 0x00007d7d bootmain() return
address0x7bf8 0x00000000 saved ebp

0x7bf4 0x00000000 saved edi
0x7bf0 0x00000000 saved esi
0x7bec

0x

0x00000000 saved ebx
0x7be8 0x00000000

0x7be4 0x00000000

0x7be0 0x00000000

0x7bdc 0x00000000

0x7bd8 0x00010054 local var: eph
0x7bd4 0x00000000

0x7bd0 0x00000000

0x7bcc 0x00007da4 entry() return

0x7bcc: 0x00007da4 0x00000000 0x00000000 0x00000000
0x7bdc: 0x00010054 0x00000000 0x00000000 0x00000000
0x7bec: 0x00000000 0x00000000 0x00000000 0x00000000
0x7bfc: 0x00007c4d 0x8ec031fa 0x8ec08ed8 0xa864e4d0
0x7c0c: 0xb0fa7502 0xe464e6d1 0x7502a864 0xe6dfb0fa
0x7c1c: 0x16010f60 0x200f7c78 0xc88366c0 0xc0220f01

N
ot

 in
 st

ac
k

Lo
ca

l v
ar

s:
(s
u
b

$
0
x
1
c
,
%
e
s
p

)

HW 1: How we know which local variable

 6

 eph = ph + elf->phnum;
 7d5a: 0f b7 05 2c 00 01 00 movzwl 0x1002c,%eax
 7d61: c1 e0 05 shl $0x5,%eax
 7d64: 01 f0 add %esi,%eax
 7d66: 89 45 e4 mov %eax,-0x1c(%ebp)

GDB

• Must use i386-elf-gdb

• When you run make qemu-gdb or qemu-
nox-gdb:
•make creates a ./.gdbinit file

• You need i386-elf-gdb to read this file to
know which process to communicate with:
•Run i386-elf-gdb from the same directory (in
a separate window)
•For jos, you can make gdb

 7

…
echo + target remote localhost:28178\n
target remote localhost:28178

echo + symbol-file kernel\n
symbol-file kernel

./.gdbinit

GDB

• Run:
•help, or
•help command

• All commands may be abbreviated (if
unambiguous)
•For example, continue or cont or co or c

• There are some special abbreviations
•stepi == si
•nexti == ni

 8

GDB

• Stepping
•step: steps a single source line
•stepi: steps a single x86 instruction
•next: steps a single source line (but skips over
subroutine calls)
•nexti: steps a single x86 instruction (but skips
over CALL instructions)

 9

GDB

• continue
•Runs code until a breakpoint or Ctrl-C

• finish
•Runs code until current function returns

• advance location
•Runs code until instruction pointer reaches
location
•Shortcut for:
–break location
–cont
–delete breakpoint

 10

GDB: Breakpoints

• break location
•Sets a breakpoint at location
•location can be:
– memory address: *0x7c00
– name: mon_backtrace, “monitor.c:71"

• Modify breakpoints with:
•delete
•disable
•enable

 11

GDB: Conditional breakpoints/watchpoints

• break location if condition
•Breaks at location if condition is true

• watch expression
•Breaks if value of expression changes

• watch -l address
•Breaks if contents of memory at address
changes

 12

(gdb) b test_backtrace if x == 3

(gdb) watch myvar
rwa

tch
 will st

op when

expressio
n is r
ead

GDB: Examining Memory

• x prints the raw contents of memory in
whatever format you want:
•x/x: hex
•x/d: decimal
•x/i: instructions

• print expression
•Evaluates the C expression and prints it

 13

(gdb) p *((struct elfhdr *) 0x10000)
$2 = {magic = 1179403647,
 elf = "\001\001\001\000\000\000\000\000\000\000\000", type = 2, machine = 3,
 version = 1, entry = 1048588, phoff = 52, shoff = 148104, flags = 0,
 ehsize = 52, phentsize = 32, phnum = 1, shentsize = 40, shnum = 18,
 shstrndx = 15}

(gdb) x/10x 0x10000
0x10000: 0x464c457f 0x00010101 0x00000000 0x00000000
0x10010: 0x00030002 0x00000001 0x0010000c 0x00000034
0x10020: 0x00024288 0x00000000

Add a number to print  

that many items (x/24x
)

GDB: Examining

 14

(gdb) info registers
eax 0x40 64
ecx 0x0 0
edx 0x1f0 496
ebx 0x0 0
esp 0x7bc4 0x7bc4
ebp 0x7bf8 0x7bf8
esi 0x0 0
edi 0x0 0
eip 0x7d3f 0x7d3f
eflags 0x46 [PF ZF]
cs 0x8 8
ss 0x10 16
ds 0x10 16
es 0x10 16
fs 0x0 0
gs 0x0 0

(gdb) info frame
Stack level 0, frame at 0xf0117f80:
 eip = 0xf0100040 in test_backtrace (kern/init.c:13); saved eip 0xf0100069
 called by frame at 0xf0117fa0
 source language c.
 Arglist at 0xf0117f78, args: x=2
 Locals at 0xf0117f78, Previous frame's sp is 0xf0117f80
 Saved registers:
 eip at 0xf0117f7c

GDB: Examining

 15

(gdb) backtrace
#0 test_backtrace (x=2) at kern/init.c:13
#1 0xf0100069 in test_backtrace (x=3) at kern/init.c:16
#2 0xf0100069 in test_backtrace (x=4) at kern/init.c:16
#3 0xf0100069 in test_backtrace (x=5) at kern/init.c:16
#4 0xf010010e in i386_init () at kern/init.c:44
#5 0xf010003e in ?? () at kern/entry.S:80
Backtrace stopped: Not enough registers or memory available to unwind
further

Layouts

 16

layout reg

layout asm

Other tricks

• set var will change the value of a variable
•set var foo=3

• GDB reads symbol file to determine variable
names, source location, etc.
•xv6 (homeworks) start up with:
–symbol-file kernel
•JOS (labs) start up with:
– symbol-file obj/kern/kernel
•That’s why in lab 1: break bootmain doesn’t
work
•If you want to debug a JOS user program, use:
–symbol-file obj/user/progname

 17

Summary

• Learn gdb well

• A good cheatsheet:
•https://darkdust.net/files/
GDB%20Cheat%20Sheet.pdf

 18

Also, learn bash and vim/emacs well!

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

GDB cheatshsheet

 19

Running
gdb <program> [core dump]

Start GDB (with optional core dump).

gdb --args <program> <args…>

Start GDB and pass arguments

gdb --pid <pid>

Start GDB and attach to process.

set args <args...>

Set arguments to pass to program to
be debugged.

run

Run the program to be debugged.

kill

Kill the running program.

Breakpoints
break <where>

Set a new breakpoint.

delete <breakpoint#>

Remove a breakpoint.

clear

Delete all breakpoints.

enable <breakpoint#>

Enable a disabled breakpoint.

disable <breakpoint#>

Disable a breakpoint.

Watchpoints
watch <where>

Set a new watchpoint.

delete/enable/disable <watchpoint#>

Like breakpoints.

<where>

function_name

Break/watch the named function.

line_number

Break/watch the line number in the cur-
rent source file.

file:line_number

Break/watch the line number in the
named source file.

Conditions
break/watch <where> if <condition>

Break/watch at the given location if the
condition is met.
Conditions may be almost any C ex-
pression that evaluate to true or false.

condition <breakpoint#> <condition>

Set/change the condition of an existing
break- or watchpoint.

Examining the stack
backtrace

where

Show call stack.

backtrace full

where full

Show call stack, also print the local va-
riables in each frame.

frame <frame#>

Select the stack frame to operate on.

Stepping
step

Go to next instruction (source line), di-
ving into function.

next

Go to next instruction (source line) but
donʻt dive into functions.

finish

Continue until the current function re-
turns.

continue

Continue normal execution.

Variables and memory
print/format <what>

Print content of variable/memory locati-
on/register.

display/format <what>

Like „print“, but print the information
after each stepping instruction.

undisplay <display#>

Remove the „display“ with the given
number.

enable display <display#>

disable display <display#>

En- or disable the „display“ with the gi-
ven number.

x/nfu <address>

Print memory.
n: How many units to print (default 1).
f: Format character (like „print“).
u: Unit.

Unit is one of:

 b: Byte,

 h: Half-word (two bytes)

 w: Word (four bytes)

 g: Giant word (eight bytes)).

GDB cheatsheet - page 1

© 2007 Marc Haisenko <marc@darkdust.net>

GDB cheatshsheet

 20

Format
a
 Pointer.

c
 Read as integer, print as character.
d
 Integer, signed decimal.
f
 Floating point number.
o
 Integer, print as octal.
s
 Try to treat as C string.

t
 Integer, print as binary (t = „two“).
u
 Integer, unsigned decimal.
x
 Integer, print as hexadecimal.

<what>
expression

Almost any C expression, including
function calls (must be prefixed with a
cast to tell GDB the return value type).

file_name::variable_name

Content of the variable defined in the
named file (static variables).

function::variable_name

Content of the variable defined in the
named function (if on the stack).

{type}address

Content at address, interpreted as
being of the C type type.

$register

Content of named register. Interesting
registers are $esp (stack pointer), $ebp
(frame pointer) and $eip (instruction
pointer).

Threads
thread <thread#>

Chose thread to operate on.

Manipulating the program
set var <variable_name>=<value>

Change the content of a variable to the
given value.

return <expression>

Force the current function to return im-
mediately, passing the given value.

Sources
directory <directory>

Add directory to the list of directories
that is searched for sources.

list

list <filename>:<function>

list <filename>:<line_number>

list <first>,<last>

Shows the current or given source con-
text. The filename may be omitted. If
last is omitted the context starting at
start is printed instead of centered a-
round it.

set listsize <count>

Set how many lines to show in „list“.

Signals
handle <signal> <options>

Set how to handle signles. Options are:

(no)print: (Donʻt) print a message when
signals occurs.

(no)stop: (Donʻt) stop the program
when signals occurs.

(no)pass: (Donʻt) pass the signal to the
program.

Informations
disassemble

disassemble <where>

Disassemble the current function or
given location.

info args

Print the arguments to the function of
the current stack frame.

info breakpoints

Print informations about the break- and
watchpoints.

info display

Print informations about the „displays“.

info locals

Print the local variables in the currently
selected stack frame.

info sharedlibrary

List loaded shared libraries.

info signals

List all signals and how they are cur-
rently handled.

info threads

List all threads.

show directories

Print all directories in which GDB sear-
ches for source files.

show listsize

Print how many are shown in the „list“
command.

whatis variable_name

Print type of named variable.

GDB cheatsheet - page 2

© 2007 Marc Haisenko <marc@darkdust.net>

