CS 134
Operating Systems

January 30, 2019

GDB

https://pdos.csail.mit.edu/6.828/2018/lec/gdb_slides.pdf

Administrivia

We have a grutor!

e Mars Park G
e \Wednesdays: 7-9 in B105

’A&\(\%

For your lab submittal, if your github name
isn’t clearly identifiable, add an AUTHOR. txt
to your JOS repository:

AUTHOR. txt

My name i1s John Smith (Jjsmith@hmc.edu)

Lecture recordings linked from schedule

Gradescope: when submitting, associate
pages with homework question

mailto:jsmith@hmc.edu

HW 1

e From bootasm.S:

Set up the stack pointer and call into C.
mov1l Sstart, %esp
call bootmain

e Later, In bootmain():

// Call the entry point from the ELF header.
// Does not return!

entry = (void(*)(void)) (elf->entry);
entry();

HW 1: What's on the stack?

call bootmain pushes a return address

The prologue in bootmain makes a stack
frame:

push 3ebp

mov Tesp, sebp
push Sedi
push 3esil

push ebx
sub S0x10, %esp

The call to entry pushes a return address

HW 1: The stack when we get to 0x1000c

0x7bcc: 0x00007da4 0x00000000 0x00000000 0x00000000
0x7bdc: 0x00010054 0x00000000 0x00000000 0x00000000
0x7bec: 0x00000000 0x00000000 0x00000000 0x00000000
O0x7bfc: 0x00007c4d O0x8ec031fa 0x8ec08ed8 0xa864e4d0 ol
0x7c0c: 0xb0£a7502 0xed64e6dl 0x7502a864 0xe6dfb0fa &
0x7clc: 0x16010£60 0x200£7c78 0xc88366C0 0xc0220£01 §
%O

0x7bfc 0x00007d7d bootmain () return

0x7bf8 0x00000000 saved ebp

0x7bf4 0x00000000 saved edi

0x7b£0 0x00000000 saved esi

0x7bec 0x00000000 saved ebx

0x7be8 0x00000000

0x7bed 0x00000000 g

0x7be0 0x00000000 ¥ °C

0x7bdc 0x00000000 — %

0x7bd8 0x00010054 — local var: eph

-

0x7bd4 0x00000000 7

0x7bd0 0x00000000

0x7bcc 0x00007da4 entry () return

HW 1: How we know which local variable

eph = ph + elf->phnum;

7d5a: 0f b7 05 2c 00 01 00 movzwl 0x1002c, %eax
7d61: cl e0 05 shl S0x5, $eax
7d64: 01 £0 add 2esi, %eax

7d66: 89 45 e4 mov 3eax,-0xlc(%ebp)

GDB

e Mustuse i386-elf-gdb

e \When you run make gemu-gdb Oor gemu-
nox-gdb:

emake createsa ./.gdbinit file

e You need i386-elf-gdb to read this file to
know which process to communicate with:

eRun i386-elf-gdb from the same directory (in
a separate window)

eFor jos, you can make gdb

echo + target remote localhost:28178\n
target remote localhost:28178

echo + symbol-file kernell\n
symbol-file kernel

/.gdbinit

GDB

e Run:
ehelp, Or
ehelp command

e All commands may be abbreviated (if
unambiguous)

e For example, continue or cont or co orc

e [here are some special abbreviations
estepl == si
enextli == ni

GDB

e Stepping
e step: steps a single source line
estepi: steps a single x86 instruction

enext: steps a single source line (but skips over
subroutine calls)

enexti: steps a single x86 instruction (but skips
over CALL instructions)

GDB

e continue
e Runs code until a breakpoint or Ctrl-C

e finish
e Runs code until current function returns

e advance location

e Runs code until instruction pointer reaches
location

e Shortcut for:

-break location
-cont
-delete breakpoint

10

GDB: Breakpoints

® break location

e Sets a breakpoint at Iocation
e Jocation can be:

-memory address: *0x7c00
-name: mon backtrace, “monitor.c:71"

e Modify breakpoints with:

edelete
edisable

ecnable

GDB: Conditional breakpoints/watchpoints

 break location if condition
eBreaks at location if condition is true

(gdb) b test backtrace if x == 3

e watch expression
e Breaks if value of expression changes

R

\%
2\ 5’(,0 Od
(gdb) watch myvar ‘9t;ﬁﬁ@
(S

Y
o ¥

® watch -1 address

e Breaks if contents of memory at address
changes

GDB: Examining Memory

e x prints the raw contents of memory in
whatever format you want:

ex/x: hex
ex/d: decimal rat a1
ex/1i: instructions

® print expression

e Evaluates the C expression and prints it

(gdb) p *((struct elfhdr *) 0x10000)

S2 = {magic = 1179403647,

elf = "\001\001\001\000\000O\N0O0O0O\NOOO\NOOONOOONOOO\NOOO", type = 2, machine = 3,
version = 1, entry = 1048588, phoff = 52, shoff =

= 148104, flags = 0,
ehsize = 52, phentsize = 32, phnum = 1, shentsize =

40, shnum = 18,
shstrndx = 15}
(gdb) x/10x 0x10000
0x10000: 0x464c457f 0x00010101 0x00000000 0x00000000
0x10010: 0x00030002 0x00000001 0x0010000c

0x00000034
0x10020: 0x00024288 0x00000000

13

GDB: Examining

(gdb) info registers

eax 0x40 64

ecx 0x0 0

edx 0x1£f0 496
ebx 0x0 0

esp 0x7bc4 0x7bc4
ebp 0x7bf8 0x7bf8
esi 0x0 0

edi 0x0 0

eip 0x7d3f 0x7d3f
eflags 0x46 [PF ZF]
CS 0x8 8

SS 0x10 16

ds 0x10 16

es 0x10 16

fs 0x0 0

gs 0x0 0

(gdb) info frame
Stack level 0, frame at 0xf0117£80:
eip = 0xf0100040 in test backtrace (kern/init.c:13); saved eip 0x£f0100069
called by frame at 0xf0117fa0
source language c.
Arglist at 0xf0117f£78, args: x=2
Locals at 0xf0117f78, Previous frame's sp is 0xf0117£80
Saved registers:
eip at 0xf01l17f7c

GDB: Examining

(gdb) backtrace

#0 test backtrace (x=2) at kern/init.c:13

#1 0xf0100069 in test backtrace (x=3) at kern/init.c:16
#2 0xf0100069 in test backtrace (x=4) at kern/init.c:16
#3 0xf0100069 in test backtrace (x=5) at kern/init.c:16
#4 0xf010010e in i386 init () at kern/init.c:44

#5 0xf010003e in ?2? () at kern/entry.S:80

Backtrace stopped: Not enough registers or memory available to unwind
further

15

32 | OxT0100040
loxf0100041
10xT0100043
10xf0100044
loxf0100047
10xTf010004a
10xf010004e
10xf0100055
I0xTf010005a
J0xf010005cC
J10xf010005e
10xT0100061
J10xf0100064

remote Thread 1 In: test _backtrace

(gdb)

<test_backtrace>

<test _backtrace+1>
<test_backtrace+3>
<test_backtrace+4>
<test_backtrace+7>
<test _backtrace+10>
<test_backtrace+14>
<test backtrace+21>
<test _backtrace+26>
<test_backtrace+28>
<test _backtrace+30>
<test _backtrace+33>
<test_backtrace+36>

Layouts

layout asm

$0x14,%esp

0x8 (%ebp) ,%ebx

%ebx, 0x4 (%esp)

$0xf01018a0, (%esp)

0xf0100996 <cprintf>

%ebx,%sebx

Oxf010006b <test backtrace+43>
-0x1(%ebx) ,%eax

%eax, (%esp)

0xf0100040 <test backtrace>

Line: 13 PC: 0xf0100040

layout reg

—Register group: general

eax 0x2 2

ecx 0x3d4 080

edx 0x3d5 081

ebx 0x3 3

esp Oxf0117f7c O0xf0117f7c

ebp O0xf0117198 O0xf0117198

16

Other tricks

e set var will change the value of a variable

eset var foo=3

e GDB reads symbol file to determine variable
names, source location, etc.

*xv6 (homeworks) start up with:
-symbol-file kernel

e JOS (labs) start up with:

- symbol-file obj/kern/kernel
e That's why in lab 1: break bootmain doesn't
work

e [f you want to debug a JOS user program, use:
-symbol-file obj/user/progname

as“a“
e Learngdbwell oe®

e A good cheatsheet:

o https://darkdust.net/files/

GL

B%20Cheat%20Sheet.pdf

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

GDB cheatshsheet

GDB cheatsheet - page 1

gdb <program> [core dump]
Start GDB (with optional core dump).

gdb --args <program> <args..>
Start GDB and pass arguments

gdb --pid <pid>
Start GDB and attach to process.

set args <args...>
Set arguments to pass to program to
be debugged.

Run the program to be debugged.

kill
Kill the running program.

Breakpoints

break <where>
Set a new breakpoint.

delete <breakpoint#>
Remove a breakpoint.

clear
Delete all breakpoints.

enable <breakpoint#>
Enable a disabled breakpoint.

disable <breakpoint#>
Disable a breakpoint.

watch <where>
Set a new watchpoint.

delete/enable/disable <watchpoint#>
Like breakpoints.

<where>

function name
Break/watch the named function.

line number
Break/watch the line number in the cur-
rent source file.

file:line number
Break/watch the line number in the
named source file.

Conditions
break/watch <where> if <condition>
Break/watch at the given location if the
condition is met.
Conditions may be almost any C ex-
pression that evaluate to true or false.

condition <breakpoint#> <condition>
Set/change the condition of an existing
break- or watchpoint.

Examining the stack
backtrace
where

Show call stack.

backtrace full

where full
Show call stack, also print the local va-
riables in each frame.

frame <frame#>
Select the stack frame to operate on.

step
Go to next instruction (source line), di-
ving into function.

© 2007 Marc Haisenko <marc @darkdust.net>

next
Go to next instruction (source line) but
don‘t dive into functions.

finish
Continue until the current function re-
turns.

continue

Continue normal execution.

Variables and memory

print/format <what>
Print content of variable/memory locati-
on/register.

display/format <what>
Like ,print®, but print the information
after each stepping instruction.

undisplay <display#>
Remove the ,display® with the given
number.

enable display <display#>

disable display <display#>
En- or disable the ,display” with the gi-
ven number.

x/nfu <address>
Print memory.
n: How many units to print (default 1).
f: Format character (like ,print®).
u: Unit.

Unit is one of:

b: Byte,

h: Half-word (two bytes)

w: Word (four bytes)

g: Giant word (eight bytes)).

19

GDB cheatshsheet

GDB cheatsheet - page 2
Manipulating the program

Pointer.

Read as integer, print as character.
Integer, signed decimal.

Floating point number.

Integer, print as octal.

Try to treat as C string.

Integer, print as binary (t = ,two").
Integer, unsigned decimal.

Integer, print as hexadecimal.

<what>

X &t h O QA Q D

expression
Almost any C expression, including
function calls (must be prefixed with a
cast to tell GDB the return value type).

file name::variable name
Content of the variable defined in the
named file (static variables).

function::variable name
Content of the variable defined in the
named function (if on the stack).

{type}address
Content at address, interpreted as
being of the C type type.

Sregister
Content of named register. Interesting
registers are $esp (stack pointer), $ebp
(frame pointer) and $eip (instruction
pointer).

thread <thread#>
Chose thread to operate on.

set var <variable name>=<value>
Change the content of a variable to the
given value.

return <expression>
Force the current function to return im-
mediately, passing the given value.

directory <directory>
Add directory to the list of directories
that is searched for sources.

list
list
list
list

<filename>:<function>
<filename>:<line number>
<first>,<last>
Shows the current or given source con-
text. The filename may be omitted. If
last is omitted the context starting at
start is printed instead of centered a-
round it.

set listsize <count>
Set how many lines to show in list”.

. Signals
handle <signal> <options>
Set how to handle signles. Options are:

(no)print. (Don‘t) print a message when
signals occurs.

(no)stop: (Don‘t) stop the program
when signals occurs.

(no)pass: (Don‘t) pass the signal to the
program.

© 2007 Marc Haisenko <marc@darkdust.net>

disassemble

disassemble <where>
Disassemble the current function or
given location.

info args
Print the arguments to the function of

the current stack frame.

info breakpoints
Print informations about the break- and

watchpoints.

info display

Print informations about the ,displays®.
locals

Print the local variables in the currently
selected stack frame.

info

info sharedlibrary

List loaded shared libraries.

info signals
List all signals and how they are cur-

rently handled.

threads
List all threads.

info

show directories
Print all directories in which GDB sear-
ches for source files.

listsize
Print how many are shown in the ,list*
command.

show

whatis variable name
Print type of named variable.

20

