CS 134
Operating Systems

Feb 6, 2019

Isolation Mechanisms

This work is a derivative of OS Organization by MIT Open Courseware used under
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec3_notes.pdf

Multiple processes

e Having multiple pieces of code running leads
to:
e Multiplexing
e |solation
e Interaction/sharing/communication

Isolation: most constraining consideration

e |solation determines much of the basic
design

e Much of the reason why we need processes

e Separate address space
e Separately scheduled CPU

What is 1solation

e Process is a unit of isolation

e Process A can't (due to bugs or malice):

e Spy on, modify, or wreck process B;
- memory
- CPU
- resources
- FDs
-Wreck the OS:
- Prevent the OS from enforcing isolation

What are the HW isolation mechanisms?

e User/Kernel mode
e Address spaces
e [imeslicing

e System call interface

User/Kernel mode

e (Controls whether instruction can access
privileged HW

e On x86, called CPL (Current Processor
Level): bottom two bits of 2cs

e CPL==0: Kernel mode—oprivileged
e CPL==3: User mode—unprivileged

e On x86, CPL protects everything relevant to
Isolation:

*\Writes to 2cs (to protect CPL)
e Every memory read/write
|/O port access

e Register access (eflags, ...)

Hardware isolation in x86 (ring)

Protection Rings

Operating
System
Kernel

Operating System
Services

Applications

Figure 5-3. Protection Rings

How to do a system cal
switching to a lower CP

e How x86 actually does it
e Combined instruction that:

-sets CPL=0

- calls into kernel code

- But only into well-defined location(s)

int 64

teax = sys call number

e Also, combined instruction that:

- Restores CPL

- Returns to user instructions

iret

|:
L

Well-defined notion of user/kernel mode

e |f CPL==0:

e Executing via entry point into kernel
e |f CPL==3:

e Executing user instructions

FFFFFFEFFE

80000000
/FFFFFFF

Simplified xv6 user/kernel
virtual address space setup

kernel stack
kernel data
kernel instructions

user stack
user data
user instructions

* Page tables prevent access to
upper area in user mode.

* Every process has same
mappings for this range

* Separate address space for
each process

* Every process has its own
mappings for this range

10

System call starting point

e sh.cwritingits "$ " prompt

) static void

LI _ putc(int fd, char c)

getcmd (char *buf, int nbuf) {

{ _ write(fd, &c, 1);
e SUIN

sh.c

int write(int, const void*, int);

void printf(int, const char*, ...); putc(fd, c);

user.h printf.c

#define SYSCALL(name) \ tdefine SYS_write 16
.globl name; \
name: \ syscall.h

movl $SYS ## name, %eax; \

int $T_SYSCALL; \ 00000cec <write>:
ret SYSCALL(write)
cec: mov S0x10, %eax
= . cfl: int $0x40
SYSCALL (write) cf3: ret

usys.s

sh.asm
11

System call: making the call

#define SYS write 16

#define SYSCALL (name)
.globl name; \

\

syscall.h name: \
movl $SYS ## name, %eax; \

00000cec <write>: int $T SYSCALL; \
SYSCALL (write) ret

cec: mov S0x10, $eax

cfl: int S0x40 -

cf3: ret SYSCALL (write)

sh.asm

einfo reg
eax 0x10
esp 0x3f
elp Oxcf
cs O0x1b

O0x3f5c:

3c
1

ex/4x Sesp
0x00000d8c 0x00000002

ex/c 0x00003f5c

36

l$'

ex/i 0x00000d8c
0xd8c <putc+32>:
0xd8d <putc+33>:

When int S$0x40 is the next instruction:

0x00003f5c 0x00000001

leave
ret

12

usys.s

Kernel entry: INT instruction

einfo reg
eax

esp

eip

Ccs

ex/6x Sesp
O0x8dffefe8:
Ox8dffeff8:

After int $0x40:

0x10
Ox8dffefe8
0x80105408
0x8

Saved err, eip, cs, eflags, esp, ss

0x00000000 0x00000cf3 0x0000001b 0x00000202
0x00003f3c 0x00000023

80105537 <vector64>:

.globl vector64
vectorb64:

pushl SO
80105537

pushl S$64
80105539:

jmp alltraps
8010553b:

push S0x0
push S0x40

jmp 80104ec2 <alltraps>

What INT did:

* Switched to process’s kernel stack
* Saved some regs on kernel stack
* Set CPLto 0
* Start executing at
kernel-supplied “vector”

13

Kernel entry: INT instruction

alltraps:
Build trap frame.
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushal

Set up data segments.
movw $(SEG KDATA<<3), %ax
movw %ax, %ds

movw %ax, %es

o©

o©

Call trap(tf), where tf=%esp

pushl %esp

call trap

Return falls through to trapret...
.globl trapret
trapret:

popal

popl %gs

popl 3fs

popl %es

popl %ds

addl $0x8, %$esp # trapno and errcode

iret

void
trap(struct trapframe *tf)
{

if(tf->trapno == T SYSCALL){
if (myproc()->killed)
exit();

myproc()->tf = tf;

syscall();

if (myproc()->killed)
exit();

return;

trapasm.d

trap.c

14

Kernel entry: INT instruction

static int (*syscalls[])(void) = {
[SYS fork] sys fork,

(X Y] ,
[SYS write] sys write,

}
void

syscall (void)

{

int num;
struct proc *curproc = myproc():;

num = curproc->tf->eax;

curproc->tf->eax = syscalls[num]();

int

sys write(void)

{
struct file *f;
int n;
char *p;

if(argfd(0, O,
return -1;

} else {
cprintf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num);
curproc->tf->eax = -1;

}

if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

&f) < 0 || argint(2, &n) < 0 || argptr(l, &p, n) < 0)

return filewrite(f, p, n);

sysfile.c

15

syscall.c

Summary

e Intricate design for User/Kernel transition

e Kernel must take adversarial view of user
Drocess
e Doesn’t trust user stack
e Checks arguments

e Page table confines what memory user
program can read/write

