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Segmentation vs. Paging
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Segmentation Paging

Need the programmer be aware the technique is being used?

How many linear address spaces are there?

Can the total address space exceed the size of phys. mem?

Can procedures and data be distinguished and separately 
protected?

Can tables whose size fluctuates be accommodated easily?

Is sharing of procedures between users facilitated?



101 fun things to do with Paging Hardware

• Better performance/efficiency 
•Demand sbrk allocation 
•Demand stack allocation 
•One zero-filled page 
•Copy-on-write fork 
•Demand Paging 

• New features 
•Memory-mapped files 
•Shared memory 
•Virtual Memory

 3



On-demand page allocation

• sbrk is the system call to allocate more 
memory for a process. 
•Difficult for applications to predict in advance 
•sbrk allocates memory that may never be used 

• Allocate lazily 
•When sbrk call is made, allocate address space 

for new memory (but not physical pages). 
•As logical pages are accessed, insert physical 

pages for them.
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x86 page faults

• One of the few dozen exceptions on x86 is 
T_PGFLT 

• Generates controlled transfer into the kernel 
(like a trap) 

• Information needed to handle the fault: 
•The virtual address that caused the fault 
•The type of violation that caused the fault (e.g., 

RW) 
•The EIP and CPL when the fault occurred
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// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
struct trapframe {
  // registers as pushed by pusha
  uint edi;
  uint esi;
  uint ebp;
  uint oesp;      // useless & ignored
  uint ebx;
  uint edx;
  uint ecx;
  uint eax;

  // rest of trap frame
  ushort gs;
  ushort padding1;
  ushort fs;
  ushort padding2;
  ushort es;
  ushort padding3;
  ushort ds;
  ushort padding4;
  uint trapno;

  // below here defined by x86 hardware
  uint err;
  uint eip;
  ushort cs;
  ushort padding5;
  uint eflags;

  // below here only when crossing rings, such as from user to kernel
  uint esp;
  ushort ss;
  ushort padding6;
};

x86.h

Type of fault

Pushed by SW trap handler

Pushed by x86 HX

More detailed reason for fault



Dispatching traps

• x86 references a special table called the 
interrupt descriptor table (IDT) 

• IDT is an array of function handlers for each 
possible exception 

• Some exceptions, like page faults, push 
additional error codes on the stack (others 
don’t) 

• For all exceptions/interrupts, HW pushes EIP, 
CS, CFLAGS, etc.
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Handling exceptions
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…
.globl vector11
vector11:
  pushl $11
  jmp alltraps
.globl vector12
vector12:
  pushl $12
  jmp alltraps
.globl vector13
vector13:
  pushl $13
  jmp alltraps
.globl vector14
vector14:
  pushl $14
  jmp alltraps
.globl vector15
…

vectors.S

One vector handler in the IDT for each
possible exception

vectors.S is generated by vectors.pl

T_PGFLT



Handling exceptions
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#include "mmu.h"
  # vectors.S sends all traps here.
.globl alltraps
alltraps:
  # Build trap frame.
  pushl %ds
  pushl %es
  pushl %fs
  pushl %gs
  pushal
  # Set up data segments.
  movw $(SEG_KDATA<<3), %ax
  movw %ax, %ds
  movw %ax, %es
  # Call trap(tf), where tf=%esp
  pushl %esp
  call trap
  addl $4, %esp
  # Return falls through to trapret...
.globl trapret
trapret:
  popal
  popl %gs
  popl %fs
  popl %es
  popl %ds
  addl $0x8, %esp  # trapno and errcode
  iret

trapasm.S

Construct SW portion of trapframe

Enter Kernel C Code



Gathering info to handle a page fault

• The VA that caused the fault 
•movl %cr2, %eax (or rcr2() in xv6) 

• The type of violation that caused the fault 
•tf->err contains flag bits 
– FEC_PR: page fault caused by protection violation 
– FEC_WR: page fault caused by write 
– FEC_U: page fault caused in user mode 

• The EIP and CPL where the fault occurred 
•EIP: tf->eip 
•CPL: tf->cs & 0x3 > 0
– or check for (tf->err & FEC_U) > 0) 
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Homework 4 solution: changes to sys_sbrk
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int
sys_sbrk(void)
{
  int addr;
  int n;

  if(argint(0, &n) < 0)
    return -1;
  addr = myproc()->sz;
#if 0
  if(growproc(n) < 0)
    return -1;
#else
  myproc()->sz += n; 
#endif
  return addr;
}

sysproc.c

Don’t allocate physical memory; 
just update myproc()->sz



Homework 4 solution: changes to trap
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void
trap(struct trapframe *tf)
{
  if(tf->trapno == T_SYSCALL){
    …
 }

  if (tf->trapno == T_PGFLT) {
    uint addr = PGROUNDDOWN(rcr2());
    if (addr < myproc()->sz) {
      char *mem = kalloc();

      if (!mem) {
        cprintf("out of memory");
        exit();
        return;
      }
      memset(mem, '\0', PGSIZE);
      cprintf("kernel faulting in page at %x\n", addr);
      mappages(myproc()->pgdir, (void *) addr, PGSIZE, V2P(mem), PTE_W|PTE_U);
      return;
    }
  }
  …
}

trap.c



Optimization: one zero-filled page

• Observation: some sbrk’ed memory is never 
written to 

• All sbrk’ed memory gets initialized to zero. 

• Idea: Use just one zero page for all sbrk’ed 
memory. 

• Copy the zero page on write (COW)
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Zero page support: changes to trap

 14

void
trap(struct trapframe *tf)
{
  …
  if (tf->trapno == T_PGFLT) {
    uint addr = PGROUNDDOWN(rcr2());
    int write = (tf->err & FEC_WR) > 0;
    if (addr < myproc()->sz) {

if (write) {
        char *mem = kalloc();

        if (!mem) {
          cprintf("out of memory");
          exit();
          return;
        }
        memset(mem, '\0', PGSIZE);
        cprintf("kernel faulting in read/write page at %x\n", addr);
        mappages(myproc()->pgdir, (void *) addr, PGSIZE, V2P(mem), PTE_W|PTE_U);
      } else {  
        cprintf("kernel faulting in read-only page at %x\n", addr);
        mappages(myproc()->pgdir, (void *) addr, PGSIZE, V2P(zeropg), PTE_U);
      }
      return;
    }
  }
  …
} trap.c



Optimization: dynamic stack

• Rather than allocate enough physical pages 
for max size of stack, allocate one to begin 
with 

• If more stack space is used, page fault will 
be generated: 
•Allocate the stack space at that point.
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Will the page fault necessarily be
one page before the top of stack? 



Optimization: copy-on-write fork

• fork copies all pages in the process 

• But, often, exec is called immediately after 
the fork 
•Which will free the newly-copied pages 

• Idea: modify fork to mark pages copy-on-write 
•All pages in both processes become read-only 
•On page fault, copy page and mark R/W 
•Extra PTE bits (AVL) useful for indicating COW 

mappings)
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Optimization: Demand paging

• Observation: exec loads entire executable 
into physical memory 

• But, often, not all pages of the executable 
are used 
•Slower exec 
•Wasted physical pages 

• Idea: modify exec to mark code pages not 
present in PTEs 
•On page fault, read corresponding disk block 

(from executable) and install PTE 
• Challenges: 
•What if file is larger than physical memory? 
•What if executable is deleted while it is running?
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Virtual memory: exceed physical memory

• Idea: Use fast (small, expensive) memory as 
a cache for slow (large, cheap) disk 
•90/10 rule: processes spend 90% of their time in 

10% of the code 
•Not all of a process’s address space needs to be 

in memory at one time 
• Illusion of near-infinite memory 
•More processes in memory (higher degree of 

multiprogramming) 

• Locality: 
•Spatial: The likelihood of accessing a resource is 

higher if a resource close to it was just 
referenced 

•Temporal: The likelihood of accessing a resource 
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VM Page fault handler

• Save registers 

• Figure out virtual address that caused the fault 

• If protection problem, signal or kill process 

• If no free page, evict a page from memory 
• If modified, write to backing store 
•Keep disk location of this page (not in page table) 
•Suspend faulting process (resume when write 

complete) 

• Read data from backing store for faulting page 
•From backing store or executable or fill-with-zero 
•Suspend faulting process (resume when read 

complete) 
•Update page table 
•Restart instruction  19



Feature: memory-mapped files

• Normally, files are accessed through open/
close/read/write/seek 

• Idea: map file into address space 
•New system call mmap() can place file at a 

location in user address space 
•Kernel must read/write to the file, similar to the 

way the page fault handler pages in from an 
executable 

• Processes can read/write using memory 
accesses rather than file read/write 
•Written data is cached in page frame 
•Difficult to change EOF of the file 

• Can be shared between processes
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Feature: distributed shared memory

• Idea: use virtual memory to pretend physical 
memory is shared between machines
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addr space on machine A

Memory from C
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Memory from B

addr space on machine B

Memory from C

Memory from A
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Page Sizes

• Advantages of smaller page size 
•Less internal fragmentation 

• Advantages of larger page sizes 
•TLB covers more bytes, so TLB hit rate is higher 
•Smaller page  

• Page sizes have tended to increase over 
time 
•1970s: Vax: 512-byte pages 
•1980s: x86: 4 KiB 
•1990s: Pentium (x86) 4Kib (or 4MiB)  
•2010s: Risc V: 4KiB or 4MiB or 1 GiB or 512GiB
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Thrashing

• What it is: 
•Spending more time paging than doing real work 

• Why it happens: 
• If the degree of multiprogramming is too big, 

each process’s working set is not resident 

• Solution: 
•Reduce degree of multiprogramming. Swap 

entire processes out to disk
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JOS Virtual Memory Map

User STAB data (optional)
Empty memory

USTABDATA
Empty memory

00200000

00400000

00000000

UTEMP

Empty memory

UTEXT 00800000

Program data & heap

eec00000UTOP
UENVS

ENVS (User R-)

UPAGES ef000000

UVPT ef400000

Cur. page table (User R-)

ULIM ef800000

KSTACKTOP

efc00000

KERNBASE f0000000

Remapped physical memory

4 Gig

0

PAGES (User R-)

USTACKTOP
Normal user stack

eebfe000

eebfd000

Empty memory
eebff000

UXSTACKTOP
User exception stack

eec00000

R-/R-

R-/R-

R-/R-

--/--

RW/--

RW/RW

--/--

RW/RW

256 MB

PTSIZE
PTSIZE

PTSIZE
PTSIZE

PTSIZE

PGSIZE
PGSIZE

Memory-mapped I/O

RW/RW

--/--

Invalid memory
CPU 0 kernel stack KSTKSIZEInvalid memory
CPU 1 kernel stack

Invalid memory
CPU 2 kernel stack

KSTKGAP

PTSIZE
PTSIZE

RW/--
--/--
RW/--
--/--
RW/--
--/--

RW/--

MMIOLIM

Jos Virtual Memory layout
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JOS UVPT

• Pgdir and page tables are referenced by 
physical memory 

• Would be nice to have a single-level page 
table in order to read/update the page table 

• Would be nice to have an easy way to find 
the virtual address of the page table 

• Idea: Set up a special pgdir entry that allows 
us to: 
•Easily map to the physical pgdir 
•Easily get a contiguous map of the PTEs
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JOS UVPT (Virtual Page Table)
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pd = lcr3();
pt = *(pd+4*PDX);
page = *(pt+4*PTX);

What MMU does

V=0x3BD

uvpd = 0x3BD<<22 + 0x3BD<<12
pd = lcr3();
pt = *(pd+4*0x3BD);
page = *(pt+4*0x3BD);

Finding the pgdir

uvpt = 0x3BD<<22 + 0x001<<12
pd = lcr3();
pt = *(pd+4*0x3BD);
page = *(pt+4*0x001);

Finding the page table entries

pte_t pte = uvpt[6532]

PTE for frame number 6532

pde_t pde = uvpd[513]
PTDE for page dir with PDX 513  


