CS 134
Operating Systems

Feb 18, 2019

Interrupts, Exceptions, and System Calls

~

This work is a derivative of OS Organization by MIT Open Courseware used under
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec3_notes.pdf

Common theme

e [he hardware wants attention now!

Why does HW want attention now?

MMU cannot translate address
User program divides by zero

User program wants to execute privileged
instruction (INT)

Network hardware wants to deliver a packet
Timer hardware wants to deliver a “tick”

Kernel CPU-to-CPU communication (e.g., to
flush TLB)

Three basic classes

e EXxceptions (e.g., page fault, divide by zero)
e Faults: Saved %eip is that of faulting instruction
- Can often be fixed and restarted

e Aborts: Saved %$eip unclear

- Must kill the associated process:
- Example: Double-fault (fault while handling a fault)

e System calls (INT, intended exception)
e Saved %eip is after the INT instruction
e Interrupts (device wants attention)

e Saved %eip is next instruction to execute

Where do device interrupts come from?

e Interrupt tells the kernel o e
the device hardware o] e —
wants attention L e 1 wee

e The driver (in the kernel) T | opmee |
knows how to tell the T T
device to do things prvsoon b I YU R B R

o Often, the interrupt T
handler calls the
relevant driver

e Or, could be done differently

(SCh edUIe d th read, pO”) APIC:Advanced Programmable Interrupt Controller

LAPIC: Local APIC: |/processor
|O APIC: Input Output APIC: |
MSI: Message Signaled Interrupts: don’t need 1O APIC

Diagram by Masum Z. Hasan 5

https://sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps

/0O with and without interrupts

Without interrupts

User program

(1) User code

WRITE

@ User code| /

WRITE

() User code

Kernel

With interrupts

User program

@ Pre-write
I/0 Command

®) Post-write

(1) User code

WRITE
@®a User code

()bUser code
WRITE

@a User code .
INTERRUPT! .-~

@b User codze

. W

\V

Kernel

@ Pre-write

I/0 Command

Kernel
Interrupt Handler

®) Post-write

Interrupt cycle

e At beginning of FDE (Fetch-Decode-
Execute) cycle, CPU checks for interrupt

e If no interrupt, fetch next instruction
e If interrupt pending:
e Suspend execution of current program

e Save context

e Set PC to start address of Interrupt service
routine (ISR) (via IDT)

e Process interrupt (execute ISR)

e Restore context (IRET), returning to interrupted
code

How does trap () know which device interrupted?

e \Where did:
tf->trapno == T TIRQO0 + TRQ TIMER
come from

e Kernel tells IOAPIC/LAPIC what vector
number to use (within IDT)

* Page faults, traps also have vector numbers

e |DT associates an instruction with each
vector number

e Each vector jumps to alltraps (pushing
vector # first)

e CPU sends many kinds of traps through IDT
e Low 32 IDT entries have special fixed meaning

How does trap () know which device interrupted?

DT {in mamory)
Torgst Offeet 31..16 Pl o
Segment Selector |'l'arou0ffw15.o
IDTR}+128 Target Offest 3116 FI -
QB0 5
(128) =3 Sagmant Selector Toargat Offed 15.0
Target Offest 3116 Pl ...
Segmeant Selecior Tangat Offesd 15.0
lDIR} M
The IDT Regstar & || P Presant / Nol Presant: If the indeerupt is actve,
koaded with the base || then this bRt is 1. An interrupt Gan be made inacive
address of the 10T || by seling this bitto O
the LIOT
Targst Offset: Location or addrass of ISR

Diagram by Masum Z. Hasan

Exacuts in CPU ISR code
iocated at this address

Not shown,
map logical address
{segment selecior & offsst)
10 Ingar a0dess

https://sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps

How xv6 uses interrupt vector machinery

e Jlapic.

t() use \/EB(:tC)r'GBZZ lapicw(TIMER, PERIODIC | (T IRQO + IRQ TIMER));

c:lapicinnit ()—tells LAPIC HW

for timer

® trap.cC

| points to code [zori = o; i < 2565 1+4)
at vector |

:tvinit ()—initializes IDT so entry

SETGATE (1idt[i], 0, SEG KCODE<<3, vectors[i], 0);

° EBL]t, SETGATE (idt[T SYSCALL], 1, SEG KCODE<<3, vectors[T SYSCALL], DPL USER).

T SYSCALL's 1 says to enable interrupts during
system calls

-Why allow interrupts during system calls?

-Why not
* DPL US:

allow interrupts during interrupt handling?

=R allows the interrupt from user mode

How does the HW know what stack to use
for an interrupt?

e User stack not OK (2esp might point
anywhere)

e \When it switches from user to kernel mode:

e Hardware-defined TSS (Task State Segment) lets
kernel configure CPU:
-one per CPU
- So, each CPU can take traps on different stacks
e proc.c:scheduler ()

- one scheduler running for each CPU
eyvm.c:switchuvm()

- Tells CPU what kernel stack to use (proc->kstack)
- Tells CPU what page table to use (proc->pgdir)

An OS may allow nested interrupt handling

e Interrupts have a priority level

e Higher priority interrupts are handled first

e \What if low-priority ISR is running and a higher-
priority interrupt is pending

- xv6: wait for ISR to finish

- Or, could execute higher-priority ISR immediately
- What happens to kernel stack?
- How far could this go?

DMA (Direct Memory Access)

e Rather than having ISR read data from
peripheral,

Without DMA
Device driver for read into buffer at addr XXXX:
Tell I/0 device to do a read
Wait for interrupt to be generated
Ask I/0 device for data and copy to XXXX
Read is complete

With DMA

Device driver for read into buffer at addr XXXX:
Tell I/0 device to do a read into PA(XXXX)
Wait for interrupt to be generated
Read is complete

13

HW 5: xv6 CPU alarm

e Interrupts plus system calls

e Challenges:

e Get it to work at all
e Maintain isolation (not easy to test!)

alarmtest.c

int
main(int argc, char *argv[])

{

printf(l, "alarmtest starting\n");
alarm(10, periodic);
for(int i = 0; i < 25%*500000; i++){
if((i % 250000) == 0)
write(2, ".", 1);
}
exit();
}
void
periodic ()
{
printf(1l, "alarm!\n");

}

asks kernel to call periodic() every
10 "ticks" of CPU Time this process consumes

15

Alarm

e Need 3 parts:

e New system call

e Count ticks as the user program runs (timer
interrupt)

e Call back to user’s registered callback (“upcall”)

Glue for new system call

o Like HW 3: new system call

#define SYS alarm 22
syscall.h

SYSCALL(alarm)

usys.S

int
sys alarm(void)
{
int ticks;
void (*handler) ();

if(argint (0, &ticks) <

extern int sys alarm(void);

[SYS alarm] sys alarm,

return -1;
if (argptr(1l,
return -1;

syscall.c

myproc()->alarmticks =

myproc ()->alarmhandler
return O0;

myproc()->ticksuntilhandler =

0)

(char **) &handler,

ticks;

= handler;

1) < 0)

ticks;

sysproc.c

struct proc {

int ticksuntilhandler;
int alarmticks;
void (*alarmhandler) ();

}

// Num ticks left until calling alarm handler

// Call this function every alarmticks ticks

proc.h

17

Must take action when timer HW interrupts

case T IRQO0 + IRQ TIMER:

if (myproc() != 0 && (tf->cs & 3) == 3) {
// Only if timer interrupt came from user space
1if (myproc()->ticksuntilhandler > 0) {
if (--myproc()->ticksuntilhandler == 0) {

myproc()->ticksuntilhandler = myproc()->alarmticks;
// When alarm handler returns, we want it to return to the
// code that was executing when this interrupt occurred.
// Save space on the stack for return address;

tf->esp -= 4;
*((uint *) tf->esp) = tf->eip;
// cause instruction pointer to be alarmhandler
tf->eip = (uint) myproc()->alarmhandler;
}
}

}

lapiceoi();

break;

trap.c

18

Why can’t we just call alarmhandler directly?

case T IRQO0 + IRQ TIMER:

if (myproc() != 0 && (tf->cs & 3) == 3) {
// Only if timer interrupt came from user space
1f (myproc()->ticksuntilhandler > 0) {
if (--myproc()->ticksuntilhandler == 0) {
myproc()->ticksuntilhandler = myproc()->alarmticks;
myproc ()->alarmhandler();

}
}
}
lapiceoi();
break;

trap.c

Scary how close it came to working

Why can we call from kernel code jump
directly into user instructions?

Why can user instructions modify the kernel
stack?

Why do system calls (INT) work from the
kernel?

We don’t want any of these behaviors in xvo!

e Xx86 HW doesn't directly provide isolation

e Many separate x86 features (page tables, INT,
user/kernel mode)

e Possible to use these features to ensure isolation
- Not the default!

What happens if we don’t reserve stack space?

case T IRQO0 + IRQ TIMER:

if (myproc() != 0 && (tf->cs & 3) == 3) {
// Only if timer interrupt came from user space
1if (myproc()->ticksuntilhandler > 0) {
if (--myproc()->ticksuntilhandler == 0) {
myproc()->ticksuntilhandler = myproc()->alarmticks;

— 1/ When alarm handler returns, we want it +to return to the
— // code—that was executing when this interrupt oceurreds
—}/ Save space—on—the stack for return addresss

+fFf S~ — ANl e
cr——CopP 7

: . _ ys s
// cause instruction pointer to be alarmhandler
tf->eip = (uint) myproc()->alarmhandler;

}
}

lapiceoi();
break;

trap.c

Where will alarmhandler return to after RET instruction?

What it trap didn’t check for CPL 37

case T IRQO0 + IRQ TIMER:

if (myproc() != 0 &&f(tf—>es& 3}y ==3) {
'/ Onlv if +j . .
1if (myproc()->ticksuntilhandler > 0) {
if (--myproc()->ticksuntilhandler == 0) {
myproc()->ticksuntilhandler = myproc()->alarmticks;

// Save space on the stack for return address;

tf->esp -= 4;
*((uint *) tf->esp) = tf->eip;
// cause instruction pointer to be alarmhandler
tf->eip = (uint) myproc()->alarmhandler;
}
}

}

lapiceoi();

break;

// When alarm handler returns, we want it to return to the
// code that was executing when this interrupt occurred.

trap.c

unexpected trap 14 from cpu 1 eip 8010517d (cr2=0x8010062d)
lapicid 1: panic: trap

*((uint *) tf->esp) = tf->eip;
8010517a: 8b 57 38 mov 0x38(%edi), %edx
8010517d: 89 50 fc mov %3edx,-0x4 (%eax)

22

Sanity checking

e \What if user-supplied alarm callback points
to kernel code?

What if another timer interrupt happens while in
periodic ()

e \Works, but is confusing

e Maybe kernel shouldn’t restart timer until
handler function finishes?

Is it a problem if periodic () modifies registers?

e Yes!
e Interrupt can happen between any two
instructions in main ()

e How could we restore registers before
returning from periodic()?

Interrupt handlers introduce concurrency

Interrupt can happen between any two
Instructions

Other code runs between those two
instructions

User code:

e not so bad, but must be OK with periodic()
running between any two instructions.

Kernel code:

e Could be a big issue. To make code in kernel
atomic, surround with:

- CLlI: clear interrupt flag
-STI: set interrupt flag

Interrupts vs. polling

Interrupts take on the order of 1 microsecond

e Cache miss, Save/restore state

Some devices can generate interrupts faster
than 1/microsecond;:

e Gigabit ethernet, for example

What do do if interrupts come in faster?

e Poll: processor spins waiting for device

* No saving of registers

Interrupt for low-rate devices (e.g, keyboard)
 No wasting CPU time polling

Poll for high-rate devices

 No wasting CPU time interrupting

Or, switch dynamically based on interrupt rate,

