
CS 134
Operating Systems

Feb 18, 2019

 
Interrupts, Exceptions, and System Calls

This work is a derivative of OS Organization by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec3_notes.pdf

Common theme

• The hardware wants attention now!

 2

Why does HW want attention now?

• MMU cannot translate address

• User program divides by zero

• User program wants to execute privileged
instruction (INT)

• Network hardware wants to deliver a packet

• Timer hardware wants to deliver a “tick”

• Kernel CPU-to-CPU communication (e.g., to
flush TLB)

 3

Three basic classes

• Exceptions (e.g., page fault, divide by zero)
•Faults: Saved %eip is that of faulting instruction
– Can often be fixed and restarted
•Aborts: Saved %eip unclear
– Must kill the associated process:
– Example: Double-fault (fault while handling a fault)

• System calls (INT, intended exception)
•Saved %eip is after the INT instruction

• Interrupts (device wants attention)
•Saved %eip is next instruction to execute

 4

Where do device interrupts come from?

• Interrupt tells the kernel  
the device hardware  
wants attention

• The driver (in the kernel) 
knows how to tell the  
device to do things

• Often, the interrupt  
handler calls the  
relevant driver
•Or, could be done differently 

 (schedule a thread; poll)

 5Diagram by Masum Z. Hasan

APIC: Advanced Programmable Interrupt Controller
LAPIC: Local APIC: 1/processor
IO APIC: Input Output APIC: 1
MSI: Message Signaled Interrupts: don’t need IO APIC

https://sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps

I/O with and without interrupts

 6

① User code

WRITE

② User code

WRITE

③ User code

User program Kernel

④ Pre-write

I/O Command

⑤ Post-write

Without interrupts

① User code

WRITE

②a User code

WRITE

③a User code

User program Kernel

④ Pre-write

I/O Command

With interrupts

⑤ Post-write

Kernel  
Interrupt Handler②bUser code

INTERRUPT!

INTERRUPT!
③b User code

Interrupt cycle

• At beginning of FDE (Fetch-Decode-
Execute) cycle, CPU checks for interrupt

• If no interrupt, fetch next instruction

• If interrupt pending:
•Suspend execution of current program
•Save context
•Set PC to start address of Interrupt service

routine (ISR) (via IDT)
•Process interrupt (execute ISR)
•Restore context (IRET), returning to interrupted

code

 7

How does trap() know which device interrupted?

• Where did: 
 tf->trapno == T_IRQ0 + IRQ_TIMER
come from

• Kernel tells IOAPIC/LAPIC what vector
number to use (within IDT)
•Page faults, traps also have vector numbers

• IDT associates an instruction with each
vector number

• Each vector jumps to alltraps (pushing
vector # first)

• CPU sends many kinds of traps through IDT
•Low 32 IDT entries have special fixed meaning

 8

How does trap() know which device interrupted?

 9Diagram by Masum Z. Hasan

https://sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps

How xv6 uses interrupt vector machinery

• lapic.c:lapicinnit()—tells LAPIC HW
to use vector 32  
for timer

• trap.c:tvinit()—initializes IDT so entry
i points to code 
at vector i
•But,  
T_SYSCALL's 1 says to enable interrupts during
system calls

– Why allow interrupts during system calls?
– Why not allow interrupts during interrupt handling?
•DPL_USER allows the interrupt from user mode

 10

lapicw(TIMER, PERIODIC | (T_IRQ0 + IRQ_TIMER));

for(i = 0; i < 256; i++)
 SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);

SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);

How does the HW know what stack to use 
for an interrupt?

• User stack not OK (%esp might point
anywhere)

• When it switches from user to kernel mode:
•Hardware-defined TSS (Task State Segment) lets

kernel configure CPU:
– one per CPU

- So, each CPU can take traps on different stacks
•proc.c:scheduler()
– one scheduler running for each CPU
•vm.c:switchuvm()
– Tells CPU what kernel stack to use (proc->kstack)
– Tells CPU what page table to use (proc->pgdir)

 11

An OS may allow nested interrupt handling

• Interrupts have a priority level
•Higher priority interrupts are handled first
•What if low-priority ISR is running and a higher-

priority interrupt is pending
– xv6: wait for ISR to finish
– Or, could execute higher-priority ISR immediately

- What happens to kernel stack?
- How far could this go?

 12

DMA (Direct Memory Access)

• Rather than having ISR read data from
peripheral,

 13

Device driver for read into buffer at addr XXXX:
 Tell I/O device to do a read
 Wait for interrupt to be generated
 Ask I/O device for data and copy to XXXX
 Read is complete

Without DMA

Device driver for read into buffer at addr XXXX:
 Tell I/O device to do a read into PA(XXXX)
 Wait for interrupt to be generated
 Read is complete

With DMA

HW 5: xv6 CPU alarm

• Interrupts plus system calls

• Challenges:
•Get it to work at all
•Maintain isolation (not easy to test!)

 14

alarmtest.c

 15

int
main(int argc, char *argv[])
{
 printf(1, "alarmtest starting\n");
 alarm(10, periodic);
 for(int i = 0; i < 25*500000; i++){
 if((i % 250000) == 0)
 write(2, ".", 1);
 }
 exit();
}

void
periodic()
{
 printf(1, "alarm!\n");
}

 asks kernel to call periodic() every
10 "ticks" of CPU Time this process consumes

Alarm

• Need 3 parts:
•New system call
•Count ticks as the user program runs (timer

interrupt)
•Call back to user’s registered callback (“upcall”)

 16

Glue for new system call

• Like HW 3: new system call

 17

#define SYS_alarm 22
syscall.h

SYSCALL(alarm)

usys.S

extern int sys_alarm(void);
…
[SYS_alarm] sys_alarm,

syscall.c

int
sys_alarm(void)
{
 int ticks;
 void (*handler)();

 if(argint(0, &ticks) < 0)
 return -1;
 if (argptr(1, (char **) &handler, 1) < 0)
 return -1;
 myproc()->alarmticks = ticks;
 myproc()->ticksuntilhandler = ticks;
 myproc()->alarmhandler = handler;
 return 0;
}

sysproc.c

struct proc {  
 …
 int ticksuntilhandler; // Num ticks left until calling alarm handler
 int alarmticks;
 void (*alarmhandler)(); // Call this function every alarmticks ticks
}

proc.h

Must take action when timer HW interrupts

 18

 case T_IRQ0 + IRQ_TIMER:
 …
 if (myproc() != 0 && (tf->cs & 3) == 3) {
 // Only if timer interrupt came from user space
 if (myproc()->ticksuntilhandler > 0) {
 if (--myproc()->ticksuntilhandler == 0) {
 myproc()->ticksuntilhandler = myproc()->alarmticks;
 // When alarm handler returns, we want it to return to the
 // code that was executing when this interrupt occurred.
 // Save space on the stack for return address;
 tf->esp -= 4;

 *((uint *) tf->esp) = tf->eip;
 // cause instruction pointer to be alarmhandler
 tf->eip = (uint) myproc()->alarmhandler;
 }
 }
 }
 lapiceoi();
 break;

trap.c

Why can’t we just call alarmhandler directly?

 19

 case T_IRQ0 + IRQ_TIMER:
 …
 if (myproc() != 0 && (tf->cs & 3) == 3) {
 // Only if timer interrupt came from user space
 if (myproc()->ticksuntilhandler > 0) {
 if (--myproc()->ticksuntilhandler == 0) {
 myproc()->ticksuntilhandler = myproc()->alarmticks;
 myproc()->alarmhandler();
 }
 }
 }
 lapiceoi();
 break;

trap.c

Scary how close it came to working

• Why can we call from kernel code jump
directly into user instructions?

• Why can user instructions modify the kernel
stack?

• Why do system calls (INT) work from the
kernel?

• We don’t want any of these behaviors in xv6!
•x86 HW doesn’t directly provide isolation
•Many separate x86 features (page tables, INT,

user/kernel mode)
•Possible to use these features to ensure isolation
– Not the default!

 20

What happens if we don’t reserve stack space?

 21

 case T_IRQ0 + IRQ_TIMER:
 …
 if (myproc() != 0 && (tf->cs & 3) == 3) {
 // Only if timer interrupt came from user space
 if (myproc()->ticksuntilhandler > 0) {
 if (--myproc()->ticksuntilhandler == 0) {
 myproc()->ticksuntilhandler = myproc()->alarmticks;
 // When alarm handler returns, we want it to return to the
 // code that was executing when this interrupt occurred.
 // Save space on the stack for return address;
 tf->esp -= 4;

 *((uint *) tf->esp) = tf->eip;
 // cause instruction pointer to be alarmhandler
 tf->eip = (uint) myproc()->alarmhandler;
 }
 }
 }
 lapiceoi();
 break;

trap.c

Where will alarmhandler return to after RET instruction?

What it trap didn’t check for CPL 3?

 22

 case T_IRQ0 + IRQ_TIMER:
 …
 if (myproc() != 0 && (tf->cs & 3) == 3) {
 // Only if timer interrupt came from user space
 if (myproc()->ticksuntilhandler > 0) {
 if (--myproc()->ticksuntilhandler == 0) {
 myproc()->ticksuntilhandler = myproc()->alarmticks;
 // When alarm handler returns, we want it to return to the
 // code that was executing when this interrupt occurred.
 // Save space on the stack for return address;
 tf->esp -= 4;

 *((uint *) tf->esp) = tf->eip;
 // cause instruction pointer to be alarmhandler
 tf->eip = (uint) myproc()->alarmhandler;
 }
 }
 }
 lapiceoi();
 break;

trap.c

unexpected trap 14 from cpu 1 eip 8010517d (cr2=0x8010062d)
lapicid 1: panic: trap

 *((uint *) tf->esp) = tf->eip;
8010517a: 8b 57 38 mov 0x38(%edi),%edx
8010517d: 89 50 fc mov %edx,-0x4(%eax)

Sanity checking

• What if user-supplied alarm callback points
to kernel code?

 23

What if another timer interrupt happens while in
periodic()

• Works, but is confusing

• Maybe kernel shouldn’t restart timer until
handler function finishes?

 24

Is it a problem if periodic() modifies registers?

• Yes!

• Interrupt can happen between any two
instructions in main()

• How could we restore registers before
returning from periodic()?

 25

Interrupt handlers introduce concurrency

• Interrupt can happen between any two
instructions

• Other code runs between those two
instructions

• User code:
•not so bad, but must be OK with periodic()

running between any two instructions.

• Kernel code:
•Could be a big issue. To make code in kernel

atomic, surround with:
– CLI: clear interrupt flag
– STI: set interrupt flag

 26

Interrupts vs. polling

• Interrupts take on the order of 1 microsecond
•Cache miss, Save/restore state

• Some devices can generate interrupts faster
than 1/microsecond:
•Gigabit ethernet, for example

• What do do if interrupts come in faster?
•Poll: processor spins waiting for device
•No saving of registers

• Interrupt for low-rate devices (e.g, keyboard)
•No wasting CPU time polling

• Poll for high-rate devices
•No wasting CPU time interrupting

• Or, switch dynamically based on interrupt rate 27

