
CS 134
Operating Systems

Feb 20, 2019

 
Multiprocessors and locking

This work is a derivative of Multiprocessors and locking by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec6_notes.pdf

Outline

• Homework 6: locking

• Lock abstraction (and deadlocks)

• Atomic instructions and how to implement
locks

 2

Why run ph.c on multiple cores?

 3

struct entry {  
 int key, value;  
 struct entry *next;  
}

Why run ph.c on multiple cores?

 4

CPU 1 CPU 2 CPU 3 CPU 4

RAM

ph0.c

• Plan: no synchronization

 5

Where are the missing keys?

• Plan: no synchronization

 6

Where are the missing keys?

• Suppose put(5) and 
put(10) run in parallel

• Both threads read 
and write to table[0] 
but in what order?

• When a possible 
ordering could  
cause incorrect behavior, 
that’s called a race condition

 7

Race condition

put(5)

put(10)

Race condition example

 8

Time

Thread 1: put(5)

Read: table[0] ! tmp

Write: tmp ! e->next  
 
Write: table[0] ! tmp

Thread 2: put(10)

Read: table[0] ! tmp

Write: tmp ! e->next  
 
Write: table[0] ! tmp

Last writer wins!

ph1.c

• Plan: big lock/coarse-grained synchronization

 9

Big lock

 10

Lock

ph2.c

• Plan: bucket locks/fine-grained synchronization

 11

Bucket Locks

 12

Lock #0

Lock #1

Lock #2

Lock #3

Lock #4

Lock #5

Lock #6

ph[0-2].c runtime with 4 cores

 13

0

2.5

5

7.5

10

ph0.c ph1.c ph2.c

Atomic operation

• Indivisible
•Either completely finishes, or doesn’t do anything
•Can’t be interrupted

• Loads and stores of single value atomic (in
HW)
•movl $52, eax

• Loads and stores of aggregate values not
atomic
•struct MyStruct a, b;  
 
a = b

 14

Concurrent hash table questions

• Does get() need a lock in ph.c?

• Does get() need a lock with concurrent
put()?

• Would get() need a lock if we supported
deletes?

 15

The lock abstraction

• Using locks:

• Suppose multiple threads call acquire(&l)
•Only one returns right away
•Others must wait for release(&l)

• Protect different data with different locks
•Allows independent critical sections to run in

parallel

• Locks not implicitly tied to data; programmer
must plan

 16

lock l

acquire(&l)
 x = x + 1 // critical section
release(&l)

When to lock

1.Do two or more threads touch a memory
location?

2.Does at least one thread write to that memory
location?  
 
 If yes to both, you need a lock!

 17

Too conservative: sometimes deliberate races are fine!

Too liberal: Think about invariants of entire data structures (not just single memory
locations)

What locks achieve

• Help avoid lost updates

• Help you create multi-step atomic
operations, hiding intermediate states

• Help maintain invariants on data structures
•Assume: invariants true at start of critical region
• Intermediate states may violate invariants
•Restore invariants before releasing lock

 18

Problem: Locks can cause deadlock

 19

Time

CPU 0:

in rename("a/f", “b/f”)

 acquire(&a)
 acquire(&b)
 …
 release(&b)
 release(&a)

CPU 1:

Could end up with both hung forever

in rename("b/f", “a/f”)

 acquire(&b)
 acquire(&a)
 …
 release(&a)
 release(&b)

Solution to lock deadlocks

• Programmer works out an order in which
locks are to be acquired
•One idea: use the VA of the lock, least to greatest

• Always acquire locks in the same order

• Complex!

 20

Tradeoff between locking and modularity

• Locks make it hard to hide details inside
modules
•E.g., to avoid deadlock, you have to know which

locks are acquired by each function

• Locks aren’t necessarily the private business
of each individual module

• Too much abstraction can make it hard to
write correct, well-performing locking

 21

What about performance?

• We want parallel speedup

 22

Locks prevent parallelism

• To maintain parallelism, split up data and
locks

• Choosing the best design is a challenge
•Whole ph.c table, each table[] row, each entry?
•Whole file system, each file/directory, each

block?

• May need to make design changes to
promote parallelism
•Example: break a single free list into a per-core

free list

 23

Lock granularity

• Start with big locks—one per module,
perhaps
•Less opportunity for deadlock
•Less reasoning about invariants

• Then measure to see if there’s a problem
•Big locks could be enough, maybe not much time

is spent in the module
•Redesign only if you have to

 24

“You can’t optimize too early”

Example: xv6 IDE driver

• iderw() issues a block request

• ideintr() completes a block request

 25

iderw() inserts →
head

ideintr() inserts →

Lock

How to implement locks

 26

struct lock {int locked};

acquire(struct lock *lk) {
 for (;;) {
 if (lk->locked) == 0) // A
 lk->locked = 1; // B
 break;
 }
 }
}

x86 has an atomic exchange instruction

 27

mov $1, %eax
xchg %eax, addr

lock addr globally
temp = *addr
*addr = %eax
%eax = temp
unlock addr

so other cores can’t use it

What xchg does in hardware

Correct way to implement lock

 28

struct lock {int locked};

acquire(struct lock *lk) {
 for (;;) {
 if (!xchg(&l->locked, 1)) // A & B
 lk->locked = 1;
 break;
 }
 }
}

Spinlock.c

• xv6 support for locks

• Why does xv6 disable interrupts in acquire
and re-enable in release?

 29

Memory ordering

• The compiler and CPU can re-order reads
and writes
•They do not have to obey the source program’s

order of memory references
•Legal behaviors are referred to as a memory

model

• Calls to xchg() prevent reordering

• If you use locks, you don’t have to
understand memory ordering (very much)

• For exotic lock-free coding, you’ll need to
understand every detail

 30

Why spin locks?

• CPU cycles wasted while lock is waiting

• Idea: Give up the CPU and switch to another
process

• Guidelines:
•Spin locks only for very short critical sections
•What about longer critical sections?

• Blocking locks available in most systems
•Higher overhead, typically
•But ability to yield the CPU

 31

Conclusion

• Don’t share if you don’t have to

• Start with coarse-grained locking

• Don’t assume; measure! Which locks
prevent parallelism?

• Insert fine-grained locking only when you
need more parallelism

• Use automated tools like race detectors to
find locking bugs

 32

