
Client-side backprojection of presentation slides into educational video!
Yekaterina Kharitonova†∗, Qiyam Tung†, Alexander Danehy†, Alon Efrat†, Kobus Barnard‡†∗!

University of Arizona: †Department of Computer Science, ‡School of Information: Science, Technology and Arts; ∗The iPlant Collaborative!

Introduction
Motivation:

The slide area in blurry, low-quality or compressed videos is
hard to read. Displaying clear and sharp slides is more
informative than showing the speaker, background, and
audience with the same level of detail.

Idea:

Blacking-out the slide area in the video results in smaller-
sized video files, thus, reducing bandwidth. HTML5
technology allows to reconstruct the video using slide-to-
frame homographies.

Goal:
Backproject high-resolution slide images into the video
stream on the client side.

Backprojection
We transform homogeneous slide points, s = [x, y, w]T,
into the frame coordinates , p = [u, v, w’]T, by
applying a homography H : p = H s!
!
We can approximate H using an affine transformation: the
camera events such as zooming-in / -out, and panning may
be approximated by scaling and translating the first frame in
the event sequence.

Given the two consecutive frames Fa and Fb, we can
approximate points from Fb by using a homogeneous matrix
T, instead of the full homography, H.

System implementation
Define: τ as the threshold of the average re-projection error (in pixels).

For each frame:
1. Compute the coordinates of the slide corners in the frame, p.
2. Estimate the affine transformation (T) and the homography (H) between the successive frames.
3. Backproject the corners using T to get the approximated coordinates, q .
4. If (q - p) < τ
 Then, use an affine transformation T for that frame.
 Else, use that frame's homography H.

Overview of the method. Top left shows the original video, top right
shows the slide removed and replaced with black pixels. The bottom
shows the slide backprojected over the slide area.

With canvas, we can create a JavaScript routine to
manipulate a backprojected slide image independently
from the video frame. This lets us overlay slide images
over video frames directly in the client's browser.

Additional Information
Visit http://slic.arizona.edu to learn more about the SLIC project and to watch the demo. Projecting the corners of slide S (left) into the video frame Fa (right).

Homography approximation
Let qb be the image points on frame Fb, approximated
by applying the affine transformation matrix T to the
coordinates from the previous frame, pa :  
pb ≈ qb = T pa!

To compute the homogeneous matrix T :

1.  Rewrite the matrix T as a column vector

2. Place the coordinates of pa into a matrix U.

3. Arrange qb as an 8x1 column vector, where

4. Use the linear least squares to solve for t by
minimizing the squared error, , where

 and

The sizes (in Mb) of the three backprojected videos and the modified videos, which were created by backprojecting a
black slide. The overall savings take into account the slide image data.

The number of backprojected frames to send to the
client based on the distance threshold τ in a test
video. This test video had 117 slide transitions and a
total of 71387 frames.

Presentation data statistics for the three videos. The size
of the high-resolution slide deck is small compared to that
of the video.

True backprojection vs. homography approximation

 τ=2! Size! τ=3! Size!
frames! 3637! 127 Mb! 2124! 74 Mb!
affine
matrices!

2175! 15 Mb! 3688! 8.6 Mb!

ID! # of
slides!

 Slide
deck size!

of
frames!

Video!
size!

WC! 48! 1.7 Mb! 71387! 187.6 Mb!
FB! 37! 1.2 Mb! 87784! 229.4 Mb!
LA! 103! 3.6 Mb! 91770! 240.5 Mb!

Video ID! WC! FB! LA!
Compression Setting (kbps)! 600! 400! 200! 600! 400! 200! 600! 400! 200!
Backprojected Video (Mb)! 171.9! 129.1! 52.7! 227.8! 159.4! 90.4! 227.0! 165.2! 95.2!

Modified Video (Mb)! 102.9! 75.1! 47.1! 135.4! 107.6! 73.5! 117.8! 94.1! 70.3!
Video Saving! 40.1%! 41.8%! 10.6%! 40.6%! 32.5%! 18.7%! 48.1%! 43%! 26.2%!

Overall Saving! 39.1%! 40.5%! 7.4%! 40.0%! 31.7%! 17.4%! 46.5%! 40.9%!22.4%!

The HTML5 <canvas> element is a drawable
bitmap region, which can be used to draw and
script graphics using JavaScript. Its built-in
transform() method only supports scale,
translation and rotation. It also provides a
native integration with the HTML <video> tag.

t =
t1
T

t2
T

!

"
#

$

%
&

qb =Ut

E = e2 = eTe
e =Ut − pb → t =U∗pb U∗ = (UTU)−1UT

If the client has sufficient CPU resources

Use: the direct homography computation

Bandwidth requirements: modified video, the
slide images, timing and homography data.

If the client cannot run computationally-
intensive operations

Use: the affine approximation

Bandwidth requirements: modified video, the
transformed slide images, timing data.

